Recent Lattice QCD results and implications for BES J

Sayantan Sharma

BROOKHIAEN

NATIONAL LABORATORY
June 7, 2016

Bielefeld-BNL-CCNU collaboration

A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E.
Laermann, S. Mukherjee, H. Ohno, P. Petreczky, C. Schmidt, S. Sharma,

W. Soeldner, P. Steinbrecher, M. Wagner

Sayantan Sharma Annual RHIC-AGS Users' Meeting 2016 Slide 1 of 20



Outline

@ The QCD phase diagram: outstanding issues from lattice

© Equation of state at finite ug

© Freezeout and Lattice observables
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Major Themes from Lattice
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Major Themes from Lattice

@ In view of the RHIC Beam
Energy Scan-1l in 2019-20
it is important to have
control over the Equation
of State.
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@ Bracket the position of ==l cor SR

CEP in phase diagram.
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Major Themes from Lattice

@ In view of the RHIC Beam
Energy Scan-1l in 2019-20
it is important to have
control over the Equation
of State.

@ Understand what happens
to HRG picture at finite
UB-

@ Bracket the position of
CEP in phase diagram.

[
[
=
=
©
e
[
Q
§
~

@ Understand the critical
behavior due to the light
quarks in the crossover
region. Atomic nuclei

Baryon density
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Basic observables

@ One of the methods to circumvent sign problem at finite u:
Taylor expansion of physical observables around ;o = 0 in powers of
w/T.

P(ps, T) P(O,T) 1 /up\2 g 1 ruB\* B
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Basic observables

@ One of the methods to circumvent sign problem at finite u:
Taylor expansion of physical observables around ;o = 0 in powers of
w/T.
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KB
Te = F)Een 5 (F) EO+ -

@ The series for XzB should diverge at the critical point. On finite lattice
\5 peaks, ratios of Taylor coefficients equal, indep. of volume
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Basic observables

@ One of the methods to circumvent sign problem at finite u:
Taylor expansion of physical observables around ;o = 0 in powers of

w/T.
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@ The series for XzB should diverge at the critical point. On finite lattice
\5 peaks, ratios of Taylor coefficients equal, indep. of volume

@ Current status:
XsB for N. = 8 pure staggered fermions
XE for N. =6,8,12,16 HISQ fermions

Sayantan Sharma Annual RHIC-AGS Users' Meeting 2016 Slide 5 of 20



Basic observables

@ One of the methods to circumvent sign problem at finite u:
Taylor expansion of physical observables around ;o = 0 in powers of
w/T.

T

P(ug, T) _P(0,T) 1 /up\2 g 1 rug\* B
L = = s (BE) B+ 4 (BB) E o)+

@ The series for XzB should diverge at the critical point. On finite lattice
\5 peaks, ratios of Taylor coefficients equal, indep. of volume

@ Current status:
XsB for N. = 8 pure staggered fermions
XE for N. =6,8,12,16 HISQ fermions

@ These observables imp. for EoS — Xg can already constrain QCD
pressure in the regime approximated by Hadron Resonance gas model.

Sayantan Sharma Annual RHIC-AGS Users' Meeting 2016 Slide 5 of 20



Challenges for Lattice computations

@ The Baryon no. susceptibilities can be expressed in terms of Quark
no. susceptibilities (QNS).
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Challenges for Lattice computations

@ The Baryon no. susceptibilities can be expressed in terms of Quark
no. susceptibilities (QNS).

@ QNS yx;j's can be written as derivatives of the Dirac operator.
Example :x4 = L(Tr(D; D, — (D;*D,)?) + (Tr(D;1D,))?).
Xii = v(Tr(D;*D, D1 Dy)).
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Challenges for Lattice computations

@ The Baryon no. susceptibilities can be expressed in terms of Quark
no. susceptibilities (QNS).

@ QNS yx;j's can be written as derivatives of the Dirac operator.
Example :x§ = (7r(D,'D, — (D, D,)?) + (Tr(D;'D,))?).
xi§ = v (Tr(D; D, D Dy)).

@ Higher derivatives — more inversions
Inversion is the most expensive step on the lattice !

@ Extending to higher orders?

e Matrix inversions increasing with the order
e Delicate cancellation between a large number of terms for higher order

QNS.
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Progress made in the last year

@ A new method of lattice calculations of x at finite 1 developed
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Progress made in the last year

@ A new method of lattice calculations of x at finite 1 developed

@ No. of inversions significantly reduced for 6th and higher orders.
For 8th order QNS the no. of matrix inversions reduced from 20 to 8.

@ Calculating explicitly the lowest eigenvalues improves performance of
the fermion inverter. Optimized codes developed to this end.

o Efficient codes based on modern computer architectures are being
developed.
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@ The QCD phase diagram: outstanding issues from lattice

© Equation of state at finite up

© Freezeout and Lattice observables

«4O0>» «Fr «E>» « Q>

i
v



Constraining EoS

@ In a regime where Hadron Resonance gas is anticipated to be a good
description of QCD, including x£ term already reproduces P(1:5) within 5%

accuracy.
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Constraining EoS

@ In a regime where Hadron Resonance gas is anticipated to be a good
description of QCD, including x£ term already reproduces P(1:5) within 5%
accuracy.

@ We are improving the errors on Y2 — increase statistics twofold this year.
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EoS away from criticality

@ The pressure for T > 160 MeV already constrained by X% for
g/ T <2 — input for hydrodynamic modeling of QGP.
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EoS away from criticality

@ The pressure for T > 160 MeV already constrained by x% for
g/ T <2 — input for hydrodynamic modeling of QGP.

@ Extension to pug/ T ~ 3 is in progress.
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@ The QCD phase diagram: outstanding issues from lattice

© Equation of state at finite ug

© Freezeout and Lattice observables
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The fluctuations near T,
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The fluctuations near T,
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The fluctuations near T,
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Clear deviation from HRG predictions!

Sayantan Sharma Annual RHIC-AGS Users' Meeting 2016 Slide 12 of 20



The fluctuations near T,
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Is this deviation consistent with the trend from Lattice?
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More Observables?

B2 _ 1|x6 AN B
NLO kpgod for g ~pus~0: Ry> == |28 — <—2> = 3R57.

2 x8  \\F

@ Fit to experimental data shows these quantities are closely related.
) R3Bl’0 ~~ Rﬁ’o. At NLO consistent within large errors in the data. |

Bielefeld-BNL-CCNU collaboration, In preparation, 16]
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More Observables?

B2 _ 1 X8

NLO kpo% o ~ s ~0: Ry, — | =5 —

2 | x5

(

X3
X2

2
) = 3R57.

@ Fit to experimental data shows these quantities are closely related.
° R3Bl’0 ~ sz’o. At NLO consistent within large errors in the data.
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NLO correction

@ The errors for R3Bl"2 not completely under control. Fit to the data
consistent with LQCD predictions at present.
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NLO correction

@ The errors for R3Bl"2 not completely under control. Fit to the data
consistent with LQCD predictions at present.

@ Aiming for a factor two reduction of errors on 6th order cumulants

near T..
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Freezeout curve: Input from lattice

o Freezeout curve parametrized as T = Tro(1 — k5 /T?,)-

Sayantan Sharma Annual RHIC-AGS Users' Meeting 2016 Slide 16 of 20



Freezeout curve: Input from lattice

o Freezeout curve parametrized as T = Tro(1 — k5 /T?,)-

@ Basic observables ZrQB = 7B
12
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Freezeout curve: Input from lattice

o Freezeout curve parametrized as T = Tro(1 — k5 /T?,)-

@ Basic observables ZrQB = 7B
12

@ Expanding the observable about the freezeout surface at up = 0,

QBO
T8 (ug) = TOB(0) + [£R%2 — kf Teo iy, | 45

Xy
R12 — X
X2
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Freezeout curve: Input from lattice

o Freezeout curve parametrized as T = Tro(1 — k5 /T?,)-

i RQ X
@ Basic observables ¥ 98 = R—E . RE = %
@ Expanding the observable about the freezeout surface at ug = 0,

B, 080
TR0 (ug) = TRE(0) + |27 = Tro %I

@ Instead from experimental parametrization, get ;5 from the first

order Taylor expansion of R182 as
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Freezeout curve: Input from lattice

o Freezeout curve parametrized as T = Tro(1 — k5 /T?,)-
Q X
@ Basic observables ¥ 98 = g—g . RS = —%
@ Expanding the observable about the freezeout surface at up = 0,
QB2 ¥ Q8.0
£ 98(ju5) = £98(0) + [£%7 — kf TroLirir, | 52
@ Instead from experimental parametrization, get ;5 from the first
B,0
order Taylor expansion of R as iz — T
12
o As a result Y98(ug) = X 95(0) {1 + a2 (Rl%)ﬂ +0 (Rle)4
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Freezeout curve: Input from lattice

o Freezeout curve parametrized as T = Tro(1 — k5 /T?,)-
i RQ X
@ Basic observables ¥ 9% = 2 ng =X
R X2

@ Expanding the observable about the freezeout surface at ug = 0,
B, @B,0
98 (ug) = 98(0) + [£9°2 — kf TroZi 7, |

@ Instead from experimental parametrization, get ;5 from the first

order Taylor expansion of R132 as

o As a result Y98(ug) = X 95(0) {1 + a2 <R182)2} +0 (RIB2)4 :

@ An estimate of ¥ %8 and Rf, from experiments allows us to calculate
C12.
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@ Caveat: In experiments one measures protons =7, Rf,. Need to
understand proton vs baryon number distributions. [ Asakawa & Kitazawa, 12].
Within HRG at least RE, is mimicked by R}, within 10%.

@ Additionally take into account also corrections due to finite range of
momenta of detected particles.

[ Karsch

Morita and Redlich

15, P Garg et. al., 13, Bzdak & Koch

12].

@ From the 2 independent expressions of ¥ 8 we extract
c1o( Tro, k%) = c1a(Tr.0) — K4 D1a.

0.2

0.1

0.4
Npb v 0.3
8 1 02
12 =
cont. extrap. == 0.1
HRG — cont. estimate .
1 1 1 0 1 1 1
140 160 180 200 140 160 180 200
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s'21Gev]
NN

200 624 39 27 19.6 1.5 7.7
‘ ; > ‘ ‘ PR
0.25 | (M/oq)/ (Mplop) |
QCD:  (Tjg, k5=0) Wl Wl B
(Tr0kb=0.02) —
0.2 I sTAR: p[™*=2.0 Gev -0 N |
pr*=0.8 GeV == °
015 |7 PHENIX/STAR2.0 - i
-
°
0.1 ]
2\2
(Mp/op)
0.05 L L L L P \P
0 0.2 0.4 0.6 0.8 1

@ This excercise give Tr o = 147 MeV consistent with expectation that its at
or below T..
Curvature: x5 < —0.012(15) — near to chiral curvature x5 = 0.0066(7).
[ Bielefeld-BNL-CCNU collaboration, 15]
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Breakdown of HRG

@ Breakdown of HRG+ onset of criticality can be already constrained with \Z.

@ Near critical point all terms in the Taylor expansion nearly equal — need to
improve the errors to observe!

® At CEP: \, >0, kgog > 1

Sayantan Sharma
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Critical-end point search from Lattice

@ Radius of convergence: ), = ,¢2n(2n -1)

B
X2n
B

X2n+2

@ Only existing result Tegp = 0.94T, p/T = 1.68(5)

@ Lowest r,—; varies significantly from our estimates and HRG — lattice
cut-off effects needs to be considered!

Sayantan Sharma
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Critical-end point search from Lattice

@ Current errors on our 2 /\F only allow us to define a favored region for

CEP!

-] XgB measured to get errors bounds on radius of convergence estimates.
@ Connection to experiments non-trivial due to non-equilibrium effects.
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Outlook
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@ Preparing for BES-1I runs: LQCD EoS important for hydrodynamic modeling

of QGP. For g/ T <2 — /sy, > 20 GeV already under control.
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Outlook

1.4 | Bielefeld-BNL-CCNU  pg/T=3
preliminary /
+ L2 l'f
= Main Focus N=6 +a
5 i
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02 O((uy'T)): band

0
120 140 160 180 200 220 240 260

T [MeV]

280

@ Preparing for BES-1I runs: LQCD EoS important for hydrodynamic modeling

of QGP. For pug/T <2 — /sy, > 20 GeV already under control.

® \Z measured with improved precision: progress towards constraining EoS for
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Outlook

1.4 | Bielefeld-BNL-CCNU  pg/T=3
preliminary /
+ L2 I'F
= Main Focus N=6 +a
5 i
e 2 8
g o8 .
@ Hg/T=2
0.6
2 e
e o4 i O(lg/Ty): open
IS, O((u/TYh: filled
02 O((uy'T)): band

0
120 140 160 180 200 220 240 260

T [MeV]

280

@ Preparing for BES-1I runs: LQCD EoS important for hydrodynamic modeling

of QGP. For pug/T <2 — /sy, > 20 GeV already under control.

® \Z measured with improved precision: progress towards constraining EoS for

@ Analysis of 5 ongoing. Crucial to estimate the errors on the EoS measured
with the sixth order cumulants.
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@ Preparing for BES-1I runs: LQCD EoS important for hydrodynamic modeling
of QGP. For pug/T <2 — /sy, > 20 GeV already under control.

® \Z measured with improved precision: progress towards constraining EoS for

@ Analysis of 5 ongoing. Crucial to estimate the errors on the EoS measured
with the sixth order cumulants.

@ Higher order cumulants will also help in bracketing the possible CEP. Current
LQCD data suggest it is g/ T < 2 but a larger value cannot be ruled out.
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